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SUMMARY 

Based on a reconsideration of the packing conditions in amorphous 
polymers, a modification of the statistical theory of rubber elasti- 
city is derived. The main assumption is, that the mean square end- 
to-end distance of a free chain in the bulk state depends on the di- 
mensions of the surrounding chains. The theory describes quite well 
the deformation behaviour of real elastomeric networks. 

INTRODUCTION 

From the statistical theory of rubber elasticity (TRELOAR, 1975) 
follows for the change of free energy at the deformation of a net- 
work in the simplest case the expression 

AF = 3 vkT<r2>d. -<r2>i (I) 
~_ L. " <rZ>o 
�9 = 5he number of elastically effective chains,<r2> a the mean 

square end-to-end distance of the chains in the deforme~ network, 
<r2>i the same quantity of the chains in the undeformed, isotropic 
network, and <r2>o the same quantity, if the chains were not con- 
nected and otherwise under the same conditions, kT has the usual 
meaning. Eq. (I) follows from the model case of a phantom network, 
where the chains can freely intersect each other and themselves. The 
crosslinking points however are assumed not to fluctuate and to be 
displaced affinely on deformation. With the ass~nption of fluctua- 
ting crosslinks in a phantom network the expression for AF is re- 
duced by a factor I-2/f, where f is the functionality, i.e. the 
nLInber of chains emanating from a crosslinking point (GRAESSLEY, 
1975). 

At a homogeneous deformation in the Cartesian coordinates we have 

<r2>d=<r2> 12 + 12 + ~2 
�9 x y z (2) 
z 3 

with a relative deformation ~. :L/L i , with L a length in the de- 
formed state and L i a length in the isotropic undeformed stat~ ^ 
For uniaxial deformation at constant volume we have ~ -~ =k-==l-z 
and x y z 

2 2 ~2+ 2~-i 
(3) <r >d = <r >i 3 
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With Eq. (I) and (3) it follows for the retractive force 

~. \~r L.1 <,:~o ~, -x (41 
and for a quantity, which may be termed reduced stress, 

2 
O~- O . l)kT <r >i (5) 

A-k-2 V <rT>>~ 
with o the force per area of tSe undeformed sample and V the vol- 
ume. 

The stress-strain behaviour of elastomeric networks is usually not 
in accordance with the statistical theory. In simple elongation,the 
real behaviour is decribed quite well in a large range of deforma- 
tion by the empirical MOONEY-RIVLIN-equation (TRELOAR, 1975) 

0 ~= 2 c + 2 C l-i (6) 
I 2 

where C and C are constants for a given sample. 
1 2 

The molecular explanation of Eq. (6) is still an open and controver- 
sial question. Some authors see it in a contribution of permanent- 
ly entangled chains to the elastic modulus (FERRY, 1979; GRAESSLEY, 
1974). Others see it in a transition from the case of not fluctua- 
ting crosslinks to that of fluctuating crosslinks during the defor- 
mation or the swelling of the network (RONCA, ALLEGRA, 1975; FLORY, 
1977). Furthermore it has been supposed, that the packing condi- 
tions or the short range order in amorphous polymers could give an 
explanation (DI MARZIO, 1962; JACKSON et al. 1966; SCHWARZ 1973, 
1977; GEBHARD et al. 1979). 

We present a modification of the rubber elasticity theory, which 
follows from a reconsideration of the packing conditions in amor- 
phous polymers. The main result is, that <r2>o in Eq. (I) is re- 
placed by an expression, which depends on deformation. 

CHAIN DIMENSIONS 

An isolated polymer chain diluted in an athermal low molecular 
weight solvent will assume all possible conformations with equal 
probability, if we consider the simple case, that all conformations 
have the same energy. On concentrating the polymer solution, the 
mean square end-to-end distance <r2> o decreases as the chain 
overlapping increases and reaches a value <r2>%b in the bulk state. 
FLORY suggested that this value is identical with that for the chain 
in a ~-solvent and that for the model case of the so-called unper- 
turbed chain~which is characterized by bond lengths, bond angles 
and rotational potentials, but can otherwise freely intersect it- 
self (FLORY, 1953,1969). This suggestion has been proved as substan- 
tially correct by neutron scattering experiments (MACONNACHIE, 
RICHARDS, 197 8). 
Nevertheless a reconsideration of the matter seems necessary. First 
of all one should see that intrinsic values as the mean optical an- 
isotropy of a chain in direction of the end-to-end vector or the 
mean ratio of trans and gauche positions are not a priori to be con- 
sidered as equal in the bulk state or the e-solvent condition on 
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the one hand a~d the unperturbed model case on the other. Despite 
of an equal <rE> the ensemble of the conformations is different. 
In the bulk state and the 8-solvent condition the exclusion 
of conformations for volume reasons is compensated by a higher sta- 
tistical weight of more closely packed conformations. 

According to FLORY, the change of dimensions of chains on changing 
the athermal solvent content is mainly due to long range interfe- 
rences, that means volume exclusions between segments, which are 
far apart within the chain (FLORY, 1953,1969). Monte Carlo simula- 
tions show however, that in short chain systems the dimensions al- 
so decrease markedly with increasing chain concentration (CURRO, 
1974; DE VOS, BELLEMANS, 1975; OKAMOTO, 1976). The effect can still 
be seen for chains which cannot intersect, but can form an intra- 
molecular contact. 
A high degree of intrachain contacts, which is mainly brought about 
by short back folding, is considered as the necessary condition 
for the maximum number of conformations in a system of flexible 
chains in the bulk state. This aspect has been illustrated in an 
earlier paper, though the conclusions drawn there on rubber elas- 
ticity are not correct (SC~ARZ, 1977). 

The dimensions of a free chain in the bulk state should increase 
to some extent, if by a fictitious process the ends of the surroun- 
ding chains would be pulled apart, so that these chains are uncoil- 
ed and offer a larger actual surface. This follows from the con- 
stancy of the sLun of intra- and interchain contacts. It is the star- 
ting point for the modification of the rubber elasticity theory 
given in the next chapter. 

RUBBER ELASTICITY THEORY 

We consider the deformation of a network in the bulk state at con- 
stant volume with the assumption that the crosslinking points do not 
fluctuate. For simplicity we assume equal chain lengths. We divide 
the total number of chains v into small groupsv,v2...u_ . The chains 
within one group should be dispersed randomly irf the sample. We 
assume the fictitious process, that one group of chains after the 
other is deformed affinely from <r2> i to <r2> d . The change 
of free energy at the deformation of the first group v l would be 

3 ~r2> d - <r2>. 
AFI= ~ 91kT ~ (7) 

<r2> o 

according to the existing theory (Eq. (I)). 
If <r->i differs from <r 2> o ' the latter has to be replaced 
however in Eq. (7) by 

<r2> Q~ = <r2> + c (<r2>. - <r2> ) (8) 
o o l o 

This expression describes the adjustment of the mean square end- 
to-end distance of a free chain in a surrounding of chains, which 
are not at <r2>o but at <r2> i . The coupling parsmeter c is 
between 0 and I. The value 0 means no coupling between the dimen- 
sions, the limiting value I means full adjustment of the dimensions, 
which will not be reached in reality. In a similar way we have ~o 
replace in AF n at the deformation of the last group~ n the <r~>o 
of the simple theory by 



f/ 

<r2> ~ <r2> + c (<r2>d - <r2> ) (9) 
O O O 

since the free chains of the group ~ are in a surrounding of chains, 
which are at <r2> d . The AF value~ for the groups in between 
will vary linearly between AF I and AF n. This yields for the total 
AF at the deformation of the network 

3~kT 

a i ~r >o ~ I  (10) 
AF= 2(AFI+AFn)= 4 (<r2>'-<r2>)[ .--~---~+ 1 

O -L 

In the foregoing treatment we asst~ne, that at the deformation of a 
single chain in the bulk state this chain behaves as a Gaussian 
chain. The decrease of the n~nber of possible conformations at this 
process is however not confined to the deformed chain, but occurs 
in this chain and the surrounding chains. 
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Fig. I: Dependence of the quantity ~ v on I- iderived from Eq. (11) 

for the case <r2> = <r2> ~ for the values 0,2 O; 0,5 ~; 
I ~ of the parameter c. 

We assume, that the coupling parameter c increases in bulk polymers 
with the extent of intrachain contacts. Therefore it should increase 
at a given polymer with the chain length. On swelling the networks, 
the coupling parameter c should decrease and vanish. Loops and free 
chain ends in a network will act as a diluent, since we are con- 
cerned with the coupling between elastically effective chains. 

A small decrease of c with deformation should exist since c will 
vanish if the chains are extended to a degree, that no more intra- 
chain contacts exist. This dependence is neglected in the follow- 
ing treatment. We neglect also a possible effect of anisotropy,since 
at moderate deformations the molecular anisotropy in elastomeric 
networks is quite small. In other words we ass~e some adjustment 
of the mean dimensions of a free chain to the surrounding chains 
in consequence of the surface relations, but we neglect a possible 
adjustment in the orientations of the end-to-end vectors. 
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For uniaxial deformation follows from Eq. (10) with the left of 
the equations (4) and with the assumption of a constant parameter 
c for the retractive force 

Li <r2>o <r2>o 
+ ~ <1-c+c < r 2 > ' ~  <r2> h/ ~-c+c <r2><r2>L 12+21-II-2 ] 3  (11) 

o o dE ~kT i-I 
In Fig. I is pl~tted th~ reduced stress~ over-~--versus 
for the case <r >i= <r->of~ the values 0,2; 0,5; 1,0 of the 
parameter c. 

DISCUSSION 

The curves of Fig. I describe rather well the stress strain beha- 
viour of elastomeric networks (TRELOAR, 1975). In the range of 
high elongation (k-I< o, 3 ) the theory is not adequate, since 
here the parameter c will decrease markedly. Otherwise the beha- 
viour of real networks is determined in this range by the limited 
chain extensibili~y (TRELOAR, 1975). In the range of moderate elon- 
gations, (O,9>1- >O, 4 ),where usually the MOONEY-RIVLIN equation 
(6) can be applied, a slight curvature can be seen in Fig. I. 
The consideration of a slight dependence on k of 
the parameter c or the compensating effect of non-Gaussian beha- 
viour of shorter chains, which increases gradually with I and cross- 
linking density (TRELOAR,1975), could lead to more straight lines. 
Otherwise the experimental results on networks of polymethylene 
show a curvature as in Fig. I (GENT,VICKROY,1967). The dotted 
straight line on the curve for c = I gives a ratio C2/CI=3,5 
on application of Eq. (6). This is the order of magnitude of the 
high values of this ratio, which are found at so~,e polymers, as 
polymethylene at low crosslinking density (GEBHARD et al. 1979; 
MARK, 1975). The decrease of C2/C I , which is found on increas- 
ing crosslinking density at a given polymer (TRELOAR,1975;GEBHARD 
et al. 1979;MARK, 1975), is equivalent to a decrease of the parame- 
ter c and therefore consistent with this theory.A closer relation 
exists however between the parameter c and C2/(C I + C 2) rather 
than to 02/CI. 

One can see from Eq. (11) and from Fig. I, that the modulus at 
k --~ I, or approximately 2(C 1 + C 2 ), is in accordance with the 

simple theory and has to be used for the determination of the cross- 
linking density, and not the value 2C I , as is usually done. 

On swelling, the ratio C2/C i decreases and vanishes (TRELOAR, 1975), 
as it should, since the 6oupling of dimensions between the elasti- 
cally effective chains decreases and vanishes. At the same time the 
modulus at X +I shoul~ decrease more as it should with the assump- 
tion of a constant <r >o �9 Computer simulation shows, that the 
increase of <r >o on dilution is not to neglect at the conditions 
we deal with on the swelling of elastomeric networks (DE VO$,BELLE- 
MANS, 1975).The larger the ratio C 2/C I in the bulk state or the 
chain length is, the larger should be the decrease of the modulus 
on swelling. From the data of DE VOS and BELLEMANS one can esti- 
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mate for chains of 1000 links on a cubic lattice an increase of 
<r2>o by a factor of about 1,8 on diluting the chains with a 
low molecular weight athermal solvent to a volume fraction of poly- 
mers2 = 0,25. This chain length might be approximately adequate 
to a chain length of 2000 bonds or 500 monomer units in ~ low cross- 
linked natural rubber network, which has a ratio C2/C1~i s 
bulk state. So the decrease of the modulus on swelling due to an 
increase of <r2>o might be in the order of magnitude to explain 
the experimental results. From these it appears as if 2C 1 and 
not 2(C 1 + C 2 ) would be in accordance with the statistical theo- 
ry, while <r2> o is considered to remain constant (TRELOAR, 1975). 

It is generally found, that networks prepared by crosslinking high- 
ly streched or crystalline material or by crosslinking in solution, 
followed by a removal of the solvent, have a very small value of 
C2/C I. The reason is still unknown. A possible explanation could 
be, that these systems contain many elastically ineffective chains, 
which act as a diluent. 

The value of C2/CI differs markedly for different polymers at com- 
parable crosslinking densities (G~HARD et al., 1979; MARK, 1975). 
The hypothesis, on which this theory is based, is that the coupling 
parameter c is determined by the extent of intrachain contacts. So 
it follows, that the extent of intrachain contacts should be larger 
in polymers with high values of C2/C I , as polymethylene, compared 
to polymers with low values of C2/C1 , as natural rubber. This 
connection can not be proved at this time, but there are some indi- 
cations in favour of it. C2/C 1 increases with decreasing mean cross- 
sectional area of the chains, that means, with increasing chain 
length per volume unit (BOYER,MILLER). Chains with lower cross- 
sectional area have less bulky side groups. They might be more able 
to build intrachain contacts by short back folding, which is in our 
opinion the main source of those contacts.With decreasing chain 
cross-sectional area, or increasing C2/C 1 , the short range order 
in the bulk state increases (G~HARD et al. 1979). This orienta- 
tional short range order, determined by stress-optical measure- 
ments, reflects somehow a change of the packing conditions in de- 
pendence of the polymer structure. 

With the consequences of this modification of rubber elasticity 
theory on thermoelasticity and stress-optical behaviour we will 
deal later. 
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